Effects of PACAP and VIP in cerebral ischemia
نویسندگان
چکیده
OBJECTIVES: Pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) belong to the same peptide family, and both neuropeptides have been shown to exert in vitro and in vivo neurotrophic and neuroprotective effects. The aim of the present study was to investigate and compare the protective effects of PACAP and VIP in permanent focal cerebral ischemia in rats. The effect on the progression of the cerebral infarct was also studied. METHOD: Male rats were injected 450 pmol PACAP or VIP dissolved in physiological saline intracerebroventricularly, preceding the occlusion of the middle cerebral artery. Control animals received vehicle treatment. Permanent focal ischemia was induced by the intraluminal fi lament occlusion of the middle cerebral artery. Animals were sacrifi ced 12 or 24 hours after the onset of ischemia, and infarcted brain areas were determined by staining bran sections with triphenyl-tetrazolium chloride. RESULTS: Twelve hours after ischemia, the infarcted brain volume resulted to be 14.8% in the control group, 15.3% in the VIP-treated group and 5.8% in the PACAP-treated animals. Twenty-four hours after middle cerebral artery occlusion, the infarcted brain volumes were 21.5%, 20.7% and 14.3% in the control, VIP and PACAP-treated animals, respectively. CONCLUSION: Our results provide further evidence for the neuroprotective effects of PACAP38 as given in form of a preischemic bolus. It slows down the progression of the evolution of the infarct and reduces the fi nal infarct size. In contrast, a related peptide, VIP, does not have neuroprotective effects under the same experimental conditions. O R I G I N A L
منابع مشابه
Receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide in the goose cerebral cortex.
Receptors for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in the goose cerebral cortex were characterized using two approaches: (1) in vitro radioreceptor binding of [(125)I]-VIP, and (2) effects of peptides from the VIP/PACAP/secretin family on cyclic AMP formation. The binding of [(125)I]-VIP to goose cortical membranes was rapid, stable,...
متن کاملEffects of PACAP, VIP and related peptides on cyclic AMP formation in rat neuronal and astrocyte cultures and cerebral cortical slices.
The effects of pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), peptide histidine-isoleucine (PHI) and peptide histidine-methionine (PHM) on cyclic AMP formation were studied in parallel on rat cerebral cortical slices, primary neuronal cultures and primary glial (astrocyte) cultures. PACAPappeared to be the most potent agent in all biological sys...
متن کاملNeuroprotective roles of pituitary adenylate cyclase-activating polypeptide in neurodegenerative diseases
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic bioactive peptide that was first isolated from an ovine hypothalamus in 1989. PACAP belongs to the secretin/glucagon/vasoactive intestinal polypeptide (VIP) superfamily. PACAP is widely distributed in the central and peripheral nervous systems and acts as a neurotransmitter, neuromodulator, and neurotrophic factor via t...
متن کاملVIP, CRF, and PACAP act at distinct receptors to elicit different cAMP/PKA dynamics in the neocortex.
The functional significance of diverse neuropeptide coexpression and convergence onto common second messenger pathways remains unclear. To address this question, we characterized responses to corticotropin-releasing factor (CRF), pituitary adenylate cyclase-activating peptide (PACAP), and vasoactive intestinal peptide (VIP) in rat neocortical slices using optical recordings of cyclic adenosine ...
متن کاملEffects of pituitary adenylate cyclase-activating polypeptide (PACAP) on cyclic AMP formation in the duck and goose brain.
Two molecular forms of pituitary adenylate cyclase-activating polypeptide (PACAP), i.e., PACAP27 and PACAP38 (0.0001-1 microM), as well as vasoactive intestinal polypeptide (VIP; 0.1-3 microM), have been studied for their effects on cyclic AMP formation in the hypothalamus and cerebral cortex of duck and goose. All three peptides concentration-dependently stimulated cyclic AMP production in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002